courtvision.trackers
ParticleFilter
Particle filter tracker.
Source code in courtvision/trackers.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
|
mean_image_plane_prediction: torch.tensor
property
Computes the weighted mean of the trackers state and projects it to the image plane.
Returns:
Type | Description |
---|---|
torch.tensor
|
torch.tensor: [x,y] coordinates of the tracker mean estimate in the image plane. Shape: [1, 2] |
xyz: torch.tensor
property
Grab the xyz coordinates of the tracker.
Returns:
Type | Description |
---|---|
torch.tensor
|
torch.tensor: [X,Y,Z] coordinates of the tracker. Shape: [N, 3] |
xyz_mean: torch.tensor
property
Grab the weighted mean of the xyz coordinates of the tracker.
Returns:
Type | Description |
---|---|
torch.tensor
|
torch.tensor: Weighted mean of the [X,Y,Z] coordinates of the tracker. Shape: [1, 3] |
likelihood(obs_state, pred_state)
Compute the likelihood of the observation given the predicted state.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
obs_state |
torch.tensor
|
Observation in the image plane. Shape: [2] |
required |
pred_state |
torch.tensor
|
Predicted state. Shape: [N, state_dim] |
required |
Returns:
Type | Description |
---|---|
torch.tensor
|
orch.tensor: likelihood of the observation given the predicted state. Shape: [N] |
Source code in courtvision/trackers.py
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
|
predict(dt=1.0 / 30.0)
Predict the next state using the current state and the time step.
p(x_t | x_{t-1}) ~ N(x_t; x_{t-1} + v_{t-1} * dt, sigma^2)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dt |
float
|
Time step in [s]. Defaults to 1.0/30.0. |
1.0 / 30.0
|
Source code in courtvision/trackers.py
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
|
resample(states, weights)
staticmethod
Given a set of states and associated weights, resample the states.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
states |
torch.tensor
|
Tracker state. Shape: [N, state_dim] |
required |
weights |
torch.tensor
|
weights associated with each state. Shape: [N x 1] |
required |
Returns:
Type | Description |
---|---|
torch.tensor
|
torch.tensor: returns the resampled states. Shape: [N, state_dim] |
Source code in courtvision/trackers.py
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
|
set_states_to(point)
Set the state of the tracker to a single point.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
point |
torch.tensor
|
point in the world space. Shape: [3] |
required |
Source code in courtvision/trackers.py
95 96 97 98 99 100 101 102 103 |
|
state_to_observation(state, *, world_to_cam, cam_to_image)
staticmethod
Map the state to the observation space. This is from the 3D world space to the 2D image plane.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
torch.Tensor
|
Tracker state. Shape: [N, state_dim] |
required |
world_to_cam |
torch.Tensor
|
description |
required |
cam_to_image |
torch.Tensor
|
description |
required |
Returns:
Type | Description |
---|---|
torch.Tensor
|
torch.Tensor: description |
Source code in courtvision/trackers.py
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
|
update(obs_state, score=torch.tensor(1.0))
Update the state using the observation and it's associated score.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
obs_state |
torch.tensor
|
measurement in the image plane. Shape: [2] |
required |
score |
torch.tensor
|
If the detector assigns a score this can be used in the update step. Defaults to torch.tensor(1.0). |
torch.tensor(1.0)
|
Source code in courtvision/trackers.py
249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
|
update_weights(weights, likelihoods)
staticmethod
Given the current weights and the likelihoods, update the weights.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weights |
torch.tensor
|
Nx1 tensor of weights |
required |
likelihoods |
torch.tensor
|
Nx1 tensor of likelihoods |
required |
Returns:
Type | Description |
---|---|
torch.tensor
|
torch.tensor: Nx1 tensor of updated weights |
Source code in courtvision/trackers.py
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
|
StateIdx
Named indices for the state tensor.
Source code in courtvision/trackers.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
|